Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR.

نویسندگان

  • K Takegoshi
  • Norihiro Miyazawa
  • Kshama Sharma
  • P K Madhu
چکیده

We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in Theory of Solid-State Nuclear Magnetic Resonance.

Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to descri...

متن کامل

Future Theoretical Approaches in Nuclear Magnetic Resonance

Solving a time-dependent linear differential equation towards obtaining evolution operators is a central problem in solid-state nuclear magnetic resonance. To this end, average Hamiltonian theory and Floquet theory have been the two commonly used theoretically methods in spin dynamics of NMR. We recently introduced the Floquet-Magnus expansion approach and here, we present the methodology of po...

متن کامل

Theories in Spin Dynamics of Solid-State Nuclear Magnetic Resonance Spectroscopy

This short review article presents theories used in solid-state nuclear magnetic resonance spectroscopy. Main theories used in NMR include the average Hamiltonian theory, the Floquet theory and the developing theories are the Fer expansion or the Floquet-Magnus expansion. These approaches provide solutions to the time-dependent Schrodinger equation which is a central problem in quantum physics ...

متن کامل

Efficient theory of dipolar recoupling in solid-state nuclear magnetic resonance of rotating solids using Floquet-Magnus expansion: application on BABA and C7 radiofrequency pulse sequences.

This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described u...

متن کامل

Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy.

In this article, we present an alternative expansion scheme called Floquet-Magnus expansion (FME) used to solve a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance (NMR) in particular. The commonly used methods to treat theoretical problems in solid-state NMR are the average Hamiltonian theory (AHT) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 142 13  شماره 

صفحات  -

تاریخ انتشار 2015